import pyLHD
N = 11
sample = pyLHD.EquidistantLHD(N = N)
samplearray([[1, 2, 3, 4, 5],
[2, 4, 5, 3, 1],
[3, 5, 2, 1, 4],
[4, 3, 1, 5, 2],
[5, 1, 4, 2, 3]])
maximin.EquidistantLHD(N, method=1)
Generate an Equidistant Latin Hypercube
| Name | Type | Description | Default |
|---|---|---|---|
N |
int | An odd integer | required |
method |
int | Specify construction method, can either be 1 or 2. Defaults to 1. | 1 |
| Type | Description |
|---|---|
| numpy.numpy.ndarray | If method=1, given an odd integer \(N=(2m+1)\), return an \((m \times m)\) equidistant LHD. This design, is a cyclic Latin square, with each level occuring once in each row and once in each column. It is also a maximin distance LHD in terms of \(L_1\)-distance |
If method=1, construction method is based on “OPTIMAL MAXIMIN L1-DISTANCE LATIN HYPERCUBE DESIGNS BASED ON GOOD LATTICE POINT DESIGNS” by LIN WANG QIAN XIAO AND HONGQUAN XU
If method=2, constuction method is based on “A CONSTRUCTION METHOD FOR MAXIMIN L1-DISTANCE LATIN HYPERCUBE DESIGNS” by Ru Yuan, Yuhao Yin, Hongquan Xu, Min-Qian Liu
Example:
array([[1, 2, 3, 4, 5],
[2, 4, 5, 3, 1],
[3, 5, 2, 1, 4],
[4, 3, 1, 5, 2],
[5, 1, 4, 2, 3]])
array([10., 10., 10., 10., 10., 10., 10., 10., 10., 10.])