import numpy as np
example_OA = np.array([[1,1],[1,2],[1,3],[2,1],
[2,2],[2,3],[3,1],[3,2],[3,3] ])orthogonal.OA2LHD
orthogonal.OA2LHD(arr, seed=None)
Transform an Orthogonal Array (OA) into an LHD
Parameters
| Name | Type | Description | Default |
|---|---|---|---|
arr |
numpy.numpy.ndarray | An orthogonal array matrix | required |
seed |
Optional[Union[int, np.random.Generator]]) | If seedis an integer or None, a new numpy.random.Generator is created using np.random.default_rng(seed). If seed is already a `Generator instance, then the provided instance is used. Defaults to None. |
None |
Returns
| Type | Description |
|---|---|
| numpy.numpy.ndarray | LHD whose sizes are the same as input OA. The assumption is that the elements of OAs must be positive |
Examples: First create an OA(9,2,3,2)
Transform the “OA” above into a LHD according to Tang (1993)
import pyLHD
pyLHD.OA2LHD(example_OA) array([[1, 2],
[2, 5],
[3, 9],
[6, 3],
[5, 4],
[4, 7],
[9, 1],
[8, 6],
[7, 8]])