maximin.maximinLHD

maximin.maximinLHD(size, h=None, method='LP', seed=None)

Generate a maximin LHD based on the L1-distance

Parameters

Name Type Description Default
size tuple of ints Output shape of (n,d), where n and d are the number of rows and columns, respectively. required
h list of ints A generator vector used to multiply each row of the design. Each element in h must be smaller than and coprime to n None
method Literal['LP', 'WT'] Linear level permutation (LP) or William’s transformation (WT). Defaults to ‘LP’. 'LP'
seed Optional[Union[int, np.random.Generator]]) If seedis an integer or None, a new numpy.random.Generator is created using np.random.default_rng(seed). If seed is already a `Generator instance, then the provided instance is used. Defaults to None. None

Raises: ValueError: If method is not ‘LP’ or ‘WT’

Returns

Type Description
numpy.numpy.ndarray A maximin LHD based on the L1-distance. Construction is obtained by applying Williams transformation on linearly permuted good lattice point (GLP) designs

Example:

import pyLHD
x = pyLHD.GoodLatticePoint(size = (11,10))
pyLHD.LqDistance(x).design()
30.0
y = pyLHD.maximinLHD(size = (11,10), method = 'LP')
pyLHD.LqDistance(y).design()
31.0
w = pyLHD.maximinLHD(size = (11,10), method = 'WT')
pyLHD.LqDistance(w).design()
39.0